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Theory of the Elasticity of Polycrystals with Viscous Grain Boundaries*
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Previous experiments have shown that in annealed polycrystalline specimens, the grain
boundaries are much more susceptible to plastic shear than are the interiors of the grains. This
paper investigates the elastic properties of a specimen in which the grain boundaries are
incapable of supporting shearing stresses. In such a specimen Young's modulus is found to be
from 50 percent to 76 percent of its value when no slip at grain boundaries occurs, depending
upon Poisson's ratio. This reduction of Young's modulus by slipping at grain boundaries should
be observable by comparing values measured statically at elevated temperatures with those
measured dynamically.

A T high temperatures rupture occurs along
grain boundaries, at low temperatures

across the interior of the grains. ' On the other
hand, the shearing resistance of grain boundaries
is apparently less at all temperatures than the
shearing resistance of the individual grains them-
selves. Thus, according to Kanter, ' a microsection
of a lead specimen which has suffered some creep
"presents the appearance of grains swimming in
their own boundaries. " The concept that slip
along grain boundaries occurs with relative ease
has been used by Schumacher' to explain the
discontinuous creep character of large grained
specimens at low stress levels. Finally, the varia-
tion of internal friction with temperature and
with grain size4 indicates that at low stress levels
the individual grains behave elastically, but that
they slip comparatively readily over one another.

A polycrystalline specimen under a constant
load cannot of course continue to creep indeh-
nitely merely by slipping at grain boundaries. As
Schumacher' has pointed out, the grains form a
self-locking system. Rather, the relaxation of
shearing stresses across the grain boundaries
gives rise to a "relaxed" Young's modulus, Eg,
which is smaller than the Young's modulus when
the stresses are unrelaxed, E. The measured
modulus will lie between Eg and E, the precise

value depending upon the time taken in its
measurement, i.e. , depending upon how much
stress relaxation is allowed, Thus in measure-
ments at elevated temperatures, Eg will be ob-
tained by quasi-static methods, E by high
frequ| ncy dynamical methods. In cyclic vibra-
tions this stress relaxation will result in a dissi-
pation of energy. The internal friction (ratio of
imaginary to real part of modulus) resulting
therefrom will have a maximum value of the
order of magnitude of (E Es)/(E+E—s). This
maximum value will occur in the frequency range
for which the period of vibration is comparable to
the time of relaxation of the shearing stresses.

The purpose of the present paper is to compare
the Young's modulus of a polycrystalline speci-
men in the case where the grain boundaries are
slippery (Es), with the case where no slip occurs
across the boundaries (E). In $1 the essential
features of the problem are analyzed. By neg-
lecting all irrelevant complicating factors, it is
found possible to reduce the problem to one that
is soluble by the standard methods of elasticity
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Frc. 1. Dependence of relaxed Young's modulus
upon Poisson's ratio.
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theory. 1he solution of this simplified problem is
given in f2. The ratio Zs/8 is obtained as a
function of Poisson's ratio 0, Eq. (8). A graph of
this ratio is given in Fig. 1.

(1 FO. RMULATION OF PROBLEM

The grain structure of a recrystallized poly-
crystalline metal has been compared to the cell
structure of foam. ' In each case the average unit
is a pentagonal dodecahedron. Examination
shows that slipping at the grain boundaries can
occur only on the faces. The geometrical arrange-
ment blocks slipping at the corners. This may be
readily visualized by a two-dimensional struc-
ture, as in Fig. 2.

When a'load is applied to a specimen, it will

drop further if the shearing stresses across the
grain boundaries are relaxed. This further
dropping of the load implies an increase in strain
energy, and hence in the strain energy stored by
each grain. It may not be obvious, at first sight,
how such a relaxation of shearing stresses at the
boundaries of a grain increases its total strain
energy. It does become obvious, however, when
we recall a well-known mathematical theorem.
This theorem states that that function y which
makes (p )A, a minimum, subject to the condition
that (y)A„be a constant, is itself a constant. Any
allowed deviation of y from a constant function
will necessarily raise the average of its square.
iXow the strain energy of a grain is an average of
a quadratic function of the stresses. The average
of the stresses themselves, however, is determined
by the conditions of loading. Thus if the 2' axis is
chosen as the axis of loading, then the average of
all stresses is zero except (Z.)~,. If the grains are
elastically isotropic, the stresses are everywhere
constant before the grain boundaries slip.
Slipping at the boundaries sets up an inhomo-
geneous distribution of stresses, and hence neces-
sarily raises the strain energy. The same quali-
tative result is to be expected for elastically
anisotropic grains. This complicating factor of
elastic anisotropy will be neglected in the follow-

ing discussion.
These qualitative considerations suggest that

we attack our problem by comparing the strain

~C. Desch, The Chemistry of Solids (Cornell, 1934),
pp. 59-63,
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FIG. 2. Illustration of slipping at grain boundaries in a
two-dimensional lattice. The arrows give the directions
of slip.

energy stored in an individual grain for the two
cases: (1)uniform stresses, (2) no shearing stresses
across grain boundaries. The average of the
stresses is to be the same in each case, namely,
all are to vanish except (Z,)A„. In each case the
modulus 8 may be obtained from the equation

W = (1/2E) (Z*)A,2,

where W is the mean strain energy per unit
volume. It is not to be expected that the ratio of
the modulus B for the two cases will depend
much upon the shape of the grain, as long as the
grain has a high degree of symmetry. In par-
ticular, it is to be expected that the ratio will bc
practically the same for grains which are spheres
as for grains which are pentagonal dodecahedrons.
Since the theory of elasticity has been ap-
plied in detail to spheres, while not at all to
dodecahedrons, we shall, in our calculations,
assume the grains to be spherical.

)2. SOLUTION OF PROBLEM

We shall first find that displacement vector U
appropriate to our problem. This displacement
vector must of course be a solution of the equa-
tions of equilibrium. It must also be associated
with a zero shearing traction across the surface
of a sphere of radius u. Upon taking the s axis to
be our axis of loading, we have the further con-
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dition that U must be such that the volume
average of X,. and of Y„vanish. This vector U we
shall construct by superimposing three vector
displacements Ur, Uzr and Urrr, each of which are
solutions of the equations of equilibrium. The
first will be taken as the displacement vector
corresponding to a uniform stress Z„all the other
stresses vanishing.

Ur ——e, (—o.x, —oy, z). (2)

6 A. E. H. Love, JI/Iathemati cal Theory of Elasticity
(Cambridge, 1934), 4th edition, pp. 250—251.

This represents the displacement vector in our
polycrystal with axial loading, before relaxation
of shearing stresses across grain boundaries.

Now Uz is associated with the shearing stress

Rf) ———ejB cos 0 sin 8

across a spherical surface. The second displace-
ment vector Urz will be so chosen as to neutralize
this shearing stress across the surface of a sphere
of radius a. A solution of the equations of
equilibrium which is associated with a shearing
stress of this type is given by Love. It is

Um = ep [ r'(B/Bx, B/By, B/Bz)
+ca(x, y, z) }(3z' r')/a—', (3)

where n is given in terms of the Lame elastic
constants X and p by

n = —2(2X+ 7p)/(SX+ 7p).

From the stresses, given by Love, which are
associated with this displacement vector, we find
that the shearing stress Rft of Uz is canceled if

e, = e&(E/12') (57,—+7p) /(8K+ 7p). (4)

The third displacement vector Uzzz will be so
chosen as to neutralize the average of the

transverse tensile stresses X, and Y„ introduced
by U». In order that no new shearing stresses be
introduced across the spherical surface of radius
cs, Urrr must represent a pure dilatation,

Urrr=es(x, y, z). (5)

The averages of X, and of Y„due to Urz are
neutralized by taking

eg e2(84——IJ/15K) (h+ p) /(SX+ 7p)
eg(7E—/15K) (X+y) /(8K+ 7y).

The displacement vector

U =Ur+Uzr+Uzrz

(6)

(7)

with Uz, Un, and Uuz given by Eqs. (2)—(6), now
satisfies all conditions appropriate to our prob-
lem. From Eq. (1), the Young's modulus for the
polycrystal with relaxed shearing stresses across
grain boundaries is given by

Es ——(Z,)A,2/2 W.

Here (Z,)„,and the mean strain energy density W
are to be calculated with U of Eq. (7). In com-
puting W, we need the total strain energy of the
sphere. This may be most readily computed frol11

the displacement U and the traction across the
surface, T, '

Strain energy=2 J'U Tds,

the integral being taken over the surface of the
sphere. Since T is normal to the surface of the
sphere, the integrand reduces to U„T„.A straight-
forward but tedious calculation gives

Es ———,
'

}(7+50)/(7+0. —50') }E, (8)

where 0 is Poisson's ratio. A plot of ER/E is
given in Fig. 1.

7 R. V. Southwell, Theory of Elasticity (Oxford, 1936),
pp 8-9


